## Answer :

**Answer:** [tex]\displaystyle r = \sqrt{36\pi}\;\text{yards}[/tex]

**Step-by-step explanation:**

To find the **radius **of a right **circular cylinder **when given the **volume **and **height**, we will solve the **volume formula **for **radius **and **substitute **the values that are given. This volume takes the **area **of the **base **and **multiples **it by the **height**.

V = πr²h

[tex]\displaystyle \frac{V}{\pi h} = r^2[/tex]

[tex]\displaystyle \sqrt{ \frac{V}{\pi h}} = r[/tex]

Now, we can **substitute **our given values.

[tex]\displaystyle r = \sqrt{\frac{V}{\pi h}}[/tex]

[tex]\displaystyle r = \sqrt{\frac{144x}{4\pi}}[/tex]

[tex]\displaystyle r = \sqrt{36x\pi}[/tex]

We are not given a **value **of x, so this is as far as we can **simplify **for now.