## Answer :

[tex]\[ \text{Volume} = \text{Length} \times \text{Breadth} \times \text{Height} \][/tex]

It's important to make sure all measurements are in the same unit. Here, the length is given in meters while the breadth and height are given in centimeters. We'll convert the length from meters to centimeters.

Given:

- Length = 2 meters

- Breadth = 30 centimeters

- Height = 20 centimeters

First, convert the length from meters to centimeters:

[tex]\[ 1 \text{ meter} = 100 \text{ centimeters} \][/tex]

[tex]\[ \text{Length} = 2 \text{ meters} = 2 \times 100 = 200 \text{ centimeters} \][/tex]

Now we have:

- Length = 200 centimeters

- Breadth = 30 centimeters

- Height = 20 centimeters

Next, we can calculate the volume using these measurements:

[tex]\[ \text{Volume} = 200 \text{ cm} \times 30 \text{ cm} \times 20 \text{ cm} \][/tex]

Performing the multiplication:

[tex]\[ \text{Volume} = 200 \times 30 = 6000 \text{ cm}^2 \][/tex]

[tex]\[ \text{Volume} = 6000 \times 20 = 120000 \text{ cm}^3 \][/tex]

Therefore, the volume of the cuboid is [tex]\( 120000 \, \text{cm}^3 \)[/tex].